Single-Cell Electric Lysis on an Electroosmotic-Driven Microfluidic Chip with Arrays of Microwells
نویسندگان
چکیده
Accurate analysis at the single-cell level has become a highly attractive tool for investigating cellular content. An electroosmotic-driven microfluidic chip with arrays of 30-μm-diameter microwells was developed for single-cell electric lysis in the present study. The cellular occupancy in the microwells when the applied voltage was 5 V (82.4%) was slightly higher than that at an applied voltage of 10 V (81.8%). When the applied voltage was increased to 15 V, the cellular occupancy in the microwells dropped to 64.3%. More than 50% of the occupied microwells contain individual cells. The results of electric lysis experiments at the single-cell level indicate that the cells were gradually lysed as the DC voltage of 30 V was applied; the cell was fully lysed after 25 s. Single-cell electric lysis was demonstrated in the proposed microfluidic chip, which is suitable for high-throughput cell lysis.
منابع مشابه
Single-Cell Chemical Lysis on Microfluidic Chips with Arrays of Microwells
Many conventional biochemical assays are performed using populations of cells to determine their quantitative biomolecular profiles. However, population averages do not reflect actual physiological processes in individual cells, which occur either on short time scales or nonsynchronously. Therefore, accurate analysis at the single-cell level has become a highly attractive tool for investigating...
متن کاملDevelopment of an Integrated Chip for Automatic Tracking and Positioning Manipulation for Single Cell Lysis
This study adopted a microelectromechanical fabrication process to design a chip integrated with electroosmotic flow and dielectrophoresis force for single cell lysis. Human histiocytic lymphoma U937 cells were driven rapidly by electroosmotic flow and precisely moved to a specific area for cell lysis. By varying the frequency of AC power, 15 V AC at 1 MHz of frequency configuration achieved 10...
متن کاملRemotely powered distributed microfluidic pumps and mixers based on miniature diodes.
We demonstrate new principles of microfluidic pumping and mixing by electronic components integrated into a microfluidic chip. The miniature diodes embedded into the microchannel walls rectify the voltage induced between their electrodes from an external alternating electric field. The resulting electroosmotic flows, developed in the vicinity of the diode surfaces, were utilized for pumping or ...
متن کاملCell docking inside microwells within reversibly sealed microfluidic channels for fabricating multiphenotype cell arrays.
We present a soft lithographic method to fabricate multiphenotype cell arrays by capturing cells within an array of reversibly sealed microfluidic channels. The technique uses reversible sealing of elastomeric polydimethylsiloxane (PDMS) molds on surfaces to sequentially deliver various fluids or cells onto specific locations on a substrate. Microwells on the substrate were used to capture and ...
متن کاملOil-sealed femtoliter fiber-optic arrays for single molecule analysis.
This paper describes a novel method for fabricating and sealing high-density arrays of femtoliter reaction chambers. We chemically etch one end of a 2.3 mm diameter glass optical fiber bundle to create an array of microwells. We then use a contact printing method to selectively modify the surface of the material between microwells with a hydrophobic silane. This modification makes it possible t...
متن کامل